
Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

1

Caching of Intermediate Results in Dataflow Environments
Eli Steenput, Yves Rolain

VUB Dienst ELEC
Pleinlaan 2

B-1050 Brussels (Belgium)
Phone +(32 2) 629 28 44

Fax +(32 2) 629 28 50
Email esteenpu@vub.ac.be

ABSTRACT
A measurement is usually repeatedly executed with slightly different settings. Caching of
intermediate results can prevent redundant execution of operations whose arguments remain
unchanged between consecutive runs. Dataflow environments lend themselves well to such an
optimisation, because data dependency information can make comparisons of cache values largely
unnecessary. This paper discusses and compares several caching strategies for both the datadriven
and the demanddriven dataflow execution scheme. Simulated performance measures are presented
to illustrate the benefits of the various schemes.

1. Introduction
The introduction of the computer has dramatically increased the complexity of the measurement
environment. The interactive use of instruments is relatively straightforward and efficient for the laboratory
scientist, technician, or engineer, but the automation of measurements is not. As a rather unique
characteristic of scientific measurement and modelling, the user is often directly involved in the design and
implementation of the programs to automate his tests or experiments.

During the verification and modification phase, the developer will repeatedly change some of the
measurement settings to observe their effect on the measurement result. However, the measurement itself
and the processing of the measured data are often very time-consuming. It is a natural reaction to try to
minimise the resulting idle time for the developer.

If only a few of the settings are modified, it is tempting to execute only the operations which depend on the
changed settings. It is unreasonable to , for example, repeat a lengthy measurement just to use a different
windowing algorithm. The developer could naievely attempt to make the execution of various parts of the
algorithm conditional, depending on the state of the settings.

This approach has a huge drawback. The partitioning of the program into conditional parts must reflect the
data dependency between the parts and the measurement settings. However, any change to the program is
liable to change these relations. Keeping the conditions consistent with the program dependencies places
an excessive burden on the developer and compromises program readability.

With parts of the code being skipped during execution, the relationship between the settings and the results
will become obtuse and indecipherable. If the user doubts whether or not the results correspond to the
latest settings, he will be tempted to run the program more often than needed, possibly nullifying the
intended time savings.

1.1 Caching Intermediate Results
To prevent redundant operations during repeated execution of a program, it is necessary to cache the
intermediate results of the parts that might be skipped. Aditionnaly, a method is required to determine if a
specific program part needs to be executed for a specific state of the program’s inputs, or if a previous
value is still valid. This can be implemented in various ways, such as by storing previous results in a table
indexed by argument values, which is proposed in [AU77] and an example of its implementation can be
found in the Maple mathematical software [C88]. The Maple remember option associates with each
function a table of previous arguments and corresponding results. Before executing a function, the table is
checked for the presence of the given combination of argument values. If the arguments are already in the

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

2

table, the result is retrieved. Otherwise, the function is executed and the table is updated. If sufficient
memory is available, this scheme will reduce the number of operations to a nearly optimum level.

There is a lookup or comparison overhead inherent in any caching scheme. This overhead will depend on
the data size and the number of previous results stored in the cache.

1.2 Dataflow Environments
In a dataflow environment, the available data dependency information can be used to lower the lookup
overhead of the argument values. The fact that a particular program part was skipped provides information
about the need to execute those sections that use the output values of the skipped part as arguments.

A dataflow graph is a directed graph, where each node (or module, box, vertex) represents an operator or
function (a task) and each directed arc (or link, wire, edge) represents a path (dependency) over which data
flows. Data flow graphs were introduced to express data dependency between tasks, where a task stands
for a data transformation. A dataflow representation of a program is a data structure that can be rapidly
traversed to determine the data dependency information between tasks. By introducing a dataflow
execution mechanism, this representation becomes a program in its own right, with a parallel, local model
of execution.

Dataflow is a partially ordered model of computation. Contrary to control flow graphs, which tend to
overspecify a computation by imposing total ordering on its operations, dataflow specifies a partial order
based on data dependencies.

Therefor, all task dependencies that are usually implicit in other representations must be explicitly
represented as data flow to ensure that data changing operations occur in the correct order. Pure dataflow
graphs do not include the notion of variables, as there are no named memory cells holding values.
Computation supposedly does not produce side effects. Flow control is not part of pure dataflow.
Programming environments must provide extensions to overcome these limitations to be able to use
dataflow as a computational model. Proper execution order of data changing operations, and the handling
of conditional and iterative constructions are among the most important.

1.2.1 Data Driven Dataflow
Out of the two possible modes of execution for a dataflow program [H92], datadriven execution is used the
most in dataflow environments. In data-driven execution schemes, a node (which represents an operation in
a dataflow graph) will execute as soon as all of its inputs have received a data token (a packet of data).
Upon execution, the node produces one data token on each of its output arcs. The data tokens on the input
arcs are lost once the node has generated an output. Data tokens flow through the graph, initiating
calculations, until each data token reaches an output terminal.

Assume each node has an associated cache that stores the value of the last passing data token. Instead of
immediately re-executing when its inputs arrive, a node would first determine whether its inputs have
changed. If they did not, it can simply retrieve its previous result from the data cache. If a change occurred,
the node re-executes, placing its new result into the cache.

The input terminal or executing node that places a data token on an arc can compare it with the cached
value, and add a tag to the token if the value did not change. A node that has only unchanged tokens on its
input arcs does not have to execute, its cached data token can be re-issued with an 'unchanged' tag. The use
of tags makes comparison with previous values only required for newly calculated results.

This simple scheme prevents needless execution of operations that do not depend on a changed input. It
even stops execution on paths depending on a changed input, if the intermediate operations yield the same
results. This has proven useful, as relational operators for example often produce the same result for
different input values.

Note that tokens are compared after each operation that was actually executed. If all input terminals have
unchanged values, not a single comparison takes place during traversal of the graph beyond the input

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

3

terminals. As there is a cost for comparing the data tokens, the usefulness of caching will depend on
whether the savings achieved by performing fewer operations exceed the overhead incurred.

If the possibility of nodes with a different input yielding the same output is disregarded, no comparisons at
all are needed downstream of the input terminals. Also, in this case, not all intermediate results need to be
stored. A thread is defined as a number of connected nodes that all depend on the same set of input
terminals. When one of the nodes in a thread has to be recalculated, all of them require recalculation.
Under these assumptions, only the ‘end’ nodes of the thread (which deliver arguments to nodes not
belonging to the thread) benefit from a cache.

It is assumed that a node that has just executed with a given set of input values, has no reason to do so
again. The scheme is not limited by this assumption, though. The program still executes in a data-driven
way, in that all nodes are ‘visited’ by data tokens. If required, an arc could be marked to execute the next
node without regard for the ‘newness’ of its data.

One could worry that keeping the intermediate results will require excessive amounts of extra memory. But
the data tokens are often stored anyway in dataflow environments. As a node generates a token, it
dynamically allocates the memory needed. The memory is not deallocated until the next token is generated
by the node. In such an implementation of a dataflow environment, the scheme would not increase the
memory requirements of the system.

1.2.2 Demand Driven Dataflow
For demand driven execution, execution of a node happens when downstream nodes request data from the
node’s output arcs. If the requested value is available, it can be returned immediately. If the value is not
immediately available, then it must be computed. If the node requires input data to execute, it will send
data requests to its arguments. The node will wait for these arguments to send it data. After execution, it
will send the results over its output arcs to the downstream nodes that made the request.

In demanddriven dataflow there is a two-way traffic in the communication lines. In one direction data
flows in the usual way from input to output. In the other direction demands are sent, from the output
terminals upstream to the inputs. To the authors’ knowledge, the “natural” implementation where the nodes
transmit demands to each other and send data in return, has hardly ever been used in any existing
environment, due to its great complexity. The propagation of demands suggested in the theoretical model
can be implemented, but is very awkward on extensions of pure dataflow like iteration constructions.

A practical implementation of “demand driven” execution (as in [DX97], for example) will walk through
the network, starting from the requested result, to ‘prime’ the arcs encountered on the way. After this
preparatory step, the ‘primed’ part of the graph will be executed using what is basically the datadriven
execution scheme.

Since a node in the demanddriven scheme will not always execute when its input data becomes available,
(because it was not in demand at the time) it is not sufficient to look at the ‘unchanged’ status of the
arriving data tokens to determine if the node has to be updated. Assume a clock is incremented each time
an input is changed, and every node or terminal is tagged with the time value of its last change. A node is
up-to-date - and hence needs no recalculation - if its parent nodes are consistent and none are newer than
the node itself.

Time stamps and ‘unchanged’ tags alone can effectively avoid many unneeded operations, with little
overhead. Only the values at the input terminals have to be compared to their previous values. Because a
new, changed argument can still lead to the same results as the previous value, additionally comparing the
results of intermediate operations with their previous values is considered worthwhile.

1.2.3 Control Constructions
Because of the absence of control flow information, some program constructions can not be represented by
standard dataflow graphs. Sequential execution, procedural abstraction and iteration are deemed necessary

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

4

to tackle complex problems. Every dataflow-based environment must therefore provide some extensions to
implement these constructions.

Among the constructions not supported by pure dataflow are: functions/procedures, sequential execution,
recursion, iteration, and conditional execution.

These can be implemented in many different ways. Most implementations can be recognised as belonging
to one of two different approaches to implement control. The first approach isolates a part of the graph (a
subgraph), so a control mechanism can operate on the subgraph. The subgraph is sometimes represented as
being enclosed by the controlling node. An example of this would be a subgraph contained in a “while-
structure” node. The control node will operate on the subgraph in ways that can not be expressed in the
pure dataflow formalism, but will behave like any other node to the rest of the graph.

The second approach uses the dataflow execution mechanism to provide control. Iteration and conditional
execution can be implemented by introducing selector (or merge) and distributor (or switch) nodes (and
cycles in the dataflow graph for iteration). A selector accepts a true or false control token to decide which
of two inputs should be propagated to its output. A distributor uses the control token to pick an output arc
to put its single input value on. These nodes can act as ‘valves’, cycling a token repeatedly through some
part of the graph. This mechanism sometimes requires certain arcs to be ‘initialised’ with a starter token.

An advantage of the second approach is the more consistent model, whereas in the first different execution
mechanisms are mixed. The second approach offers the virtues of a uniform data model and provides for
sufficient control of operations to build realistic applications. However, it operates at a low level with very
basic computational primitives. The greater flexibility comes at the cost of a larger learning curve and
greater effort to build complex operations. The first approach produces programs that are easier to
understand, and most environments prefer this approach for clarity.

2. Performance Evaluation of Dataflow Execution Schemes
The performance and overhead of a specific scheme will not only depend on the properties of the dataflow
graphs (such as the distribution of compute times and data sizes, the branching factor of the arcs and the
graph connectivity), but also on the unpredictable sequence of user interactions. The following section
studies the feasibility of evaluating the effect of different execution schemes and buffering on a given
algorithm.

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

5

2.1 Analytic evaluation of a simple Network Analyser example
This simple network analyser will
produce the transfer function or power
spectrum of a device under test (DUT).
This example immediately illustrates the
difficulty of comparing datadriven and
demanddriven execution. The use of
two outputs is only sensible in a
demanddriven environment. For
datadriven execution, the programmer
will most likely insert a condition
immediately following the FFT nodes to
select one of the outputs.

This 15 node graph has 4 input
terminals (inputfraction 27%). There are
7 threads, which makes the average
threadlength 2.1. If we break up this
total, we find 5 1-node threads, 1 2-
node thread and 1 8-node thread. There
is a distinct disproportion of
threadlength before and after the
measurement. The average number of
output arcs is 1.4.

The calculation costs and buffer sizes
are indicated on Figure 1. The cost s for
set-up of the measurement equipment,
Gn for loading the signal into the
generator and Mn for the measurement
pose a problem to computing a
performance, as these will depend on
such factors as the hardware and the
sample period.

There are 15 possible combinations of input status.

• Ten lead to complete recalculation, the total cost is Gn+3nlog2n+Mn+s+2.5n (+2.5n)datadriven, with n the
number of samples,

• one has a cost of 2nlog2n+Mn+2.5n (+2.5n)datadriven,
• two a cost of 2nlog2n+Mn+s+2.5n (+2.5n)datadriven, and
• two a cost of Gn+3nlog2n+Mn+2.5n (+2.5n)datadriven.

If the input changes are stochastically independent, the average required calculation cost is
0.8Gn+2.8nlog2n+Mn+0.8s+2.5n (+2.5n)datadriven.

None of the nodes are likely to produce the same result given a changed argument, so comparing the input
terminal values (all scalar) will avoid any redundant operation.

As an example, assume n = 105, M = 10, G = 0.5 and s = 104.
This yields the following costs (overhead is ignored):
• total cost is 6292892 demanddriven, 6542892 datadriven
• buffered cost is 5948699 demanddriven, 6198699 datadriven

Figure 1 A Simple Network Analyser

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

6

0.00E+00
1.00E+06
2.00E+06
3.00E+06
4.00E+06
5.00E+06
6.00E+06
7.00E+06

Cost No
Buffer

Cost Min
Buffer

Data Driven
Demand Driven

Figure 2 Overview of average costs

This example illustrates some of the difficulties encountered and the assumptions required when attempting
to calculate the performance of an execution scheme for a specific algorithm.

The apparently small benefit gained from caching (or from demand driven execution) can be attributed to
the disparity in threadlength in the graph structure. Due to the simplicity of the example, the input settings
affect only the measurement itself, not the data processing,. More than half of the nodes depend on all
input terminals, and are thus executed for each input change. Caching is nevertheless found useful in data
visualisation environments [DX97]. This suggests input terminals should be distributed more or less evenly
over the graph to make caching profitable.

2.2 Simulations
Related research [CG92, SCNPW93, WS95] suggests the use of simulations, using random generated
graphs and user interactions, to obtain performance measures. This method was adapted to several dataflow
execution schemes, including those from [SR96, SR97, SR97bis].

A simulator was created to calculate the performance and overhead for the following caching schemes:

1. no caching, no comparisons to previous values
2. caching the end nodes of threads, comparing values assigned to input terminals with their previous

value
3. caching and comparing values at the end nodes of threads
4. caching and comparing values at every node

In the previous discussion only the last results are stored in the cache. A node could cache more than just
the last value (as in [DX97]), thus increasing the probability of finding a result in the cache, but this
method was not explicitly considered in the simulation.

2.2.1 Creating the Graphs
Graphs are created randomly with a predetermined number of nodes and number of input terminals. For
each node a size and a calculation cost is chosen randomly from a given range. Conditional and iterative
functions are not modelled, but each node has a randomly associated probability of yielding the same result
on execution (this could alternatively be thought of as a cache hit). The maximum value of this probability,
the ChanceFactor, is chosen on graph level.

From the input terminals, links are made to randomly selected graphs. Each node has at least one output,
the exact number of outputs is random due to the graph construction process.

Then nodes that already have an input are randomly connected to nodes that do not yet have outputs - to
avoid loops - until all nodes (except one) have at least one output. The number of links per node is again
determined randomly based on the BranchingFactor. The last remaining node is removed, and its
arguments are chosen as the output nodes of the graph.

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

7

2.2.2 Creating an Interaction
Simulating data driven dataflow is relatively straightforward. Some of the inputs are marked as changed,
all the inputs get an activation token, and the tokens are propagated through the graph. To evaluate the
effect of caching, the simulator must determine which nodes can make use of a cached value. In a
datadriven scheme, these are the nodes whose arguments are the same as before.

The simulator compares datadriven and demanddriven execution of the same graphs, with the same pattern
of changed input terminals. It can be argued though that a demanddriven environment will prompt the use
of a different ‘programming style’ than a datadriven environment. However, this can hardly be taken into
account in a simulation.

A demanddriven scheme is only relevant when the system has more than one output node. To obtain
graphs with several outputs, it was sufficient to discard the single output node of the graphs produced by
the graph generation algorithm, and use its arguments as output nodes. It must be noted, however, that
some of the outputs thus obtained may require very little calculation. Without statistical information on
typical application graphs, it is impossible to determine how this compares to a realistic output cost
distribution.

For each interaction, one of the outputs is selected at random, and all its downstream arcs are ‘primed’.
Only activation tokens passing through primed arcs will influence the performance data collected on
demanddriven execution. Arcs are ‘unprimed’ once an activation token has passed through them.

In the demanddriven mode, only part of the graph will reflect the current situation of the input terminals at
a given time. The nodes that do not contribute to the selected result are not updated when their arguments
change. The ‘unchanged’ status of the arguments is therefore no longer sufficient to determine whether a
node can reuse its previous value or has to be recomputed. The simulator handles this by having a node
mark each of its output arcs when its value changes, and unmark each of its input arcs when it is passed by
an activation token (this works because there are no loops in the simulated graphs). That way a node can
determine whether the value of an argument changed since its last use by the node (instead of since its last
calculation, which is reflected by the ‘changed’ tag).

As with datadriven execution, several comparison strategies are possible. If only the values assigned to
input terminals are checked for change, the required cache space can be decreased. The only nodes that
need to cache their value are those who are argument to a node depending on a larger set of input terminals
as its individual arguments. Those nodes, forming the outputs of a ‘thread’ depending on the same inputs,
are marked during the graph generation phase by compiling and comparing the set of input terminals each
node depends on.

The effects of several graph properties were studied: graph size, relative number of inputs, the branching
factor, the threadlength and the chancefactor. The values under study are the calculation cost and the
comparison overhead. The calculation cost is subdivided in CostNoBuffer (the cost for executing the entire
graph with no caching), CostMinBuffer (the cost for executing the graph when taking into account which
input terminals have new values), CostMaxBuffer (the cost for executing the graph when each intermediate
result is compared with its previous value), and CostMedBuffer (compares results at the end of a thread).
The simulated costs are corrected for graph size and average graph cost.

The exact overhead is difficult to determine, and the data size is taken as a worst case estimate.
OverheadMinBuffer is the accumulated data size of the input terminals, OverheadMaxBuffer is the
accumulated data size of all nodes that are executed, and OverheadMedBuffer is the compare overhead for
results on the end of threads.

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

8

2.2.3 Simulation Results

2.2.3.1 Datadriven Scheme

CostMaxBuffer

CostMedBuffer

CostMinBuffer

CostNoBuffer

0

0.2

0.4

0.6

0.8

1

1.2

0.00 0.20 0.40 0.60 0.80 1.00

Figure 4 Cost vs. Chancefactor

The first obvious parameter affecting the cost is the fraction of changed input terminals (Figure 3).
CostMinBuffer varies from 0% of CostNoBuffer when no inputs have changed to 100% when all inputs
have changed, and is not very sensitive to the graph structure. CostMaxBuffer will be equal to
CostMinBuffer in the worst case, but is usually smaller. CostMaxBuffer can be smaller than CostNoBuffer
even when all inputs have changed.

The amount of performance increase depends on the probability of the nodes producing a changed result,
and on the graph structure. A low chancefactor (corresponding to most nodes producing changed values)
will yield a CostMaxBuffer as high as CostMinBuffer (Figure 4).

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Figure 6 Threadlength vs. Branchingfactor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

CostNoBuffer
CostMinBuffer
CostMedBuffer
CostMaxBuffer

Figure 3 Cost vs. Changedfraction

CostNoBuffer
CostMinBuffer
CostMedBuffer
CostMaxBuffer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

Figure 5 Cost vs. Inputfraction

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

9

Contrary to expectation, a graph with only a few inputs still benefits from the maximum buffer scheme. In
fact, the higher the inputfraction, the higher the cost (Figure 5). The determining factor here seems to be
the threadlength, which is the average number of nodes per thread. Equally-sized graphs with fewer inputs
tend to have longer threads, which makes the influence of one unchanged result more pronounced. The
same effect, but to a lesser extent applies to CostMinBuffer. CostMaxBuffer can be dramatically low for
low inputfractions.

OverheadMaxBuffer
OverheadMedBuffer

OverheadMinBuffer

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

Figure 8 Overhead vs. Threadlength

The branchingfactor influences the cost through its influence on the threadlength (Figure 6). With
increasing branchfactor, the threadlength decreases to a minimum, then increases again (presumably
because due to the high level of interconnection, most nodes will ultimately depend on all input terminals).

The cost of course increases with graph size, but the relative costs are almost constant under size variation.

The overhead is taken to be the cost of comparing the new values with previous ones.
MinCompareOverhead is the overhead for comparing only the values of the input terminals. This value
increases with the fraction of changed inputs (Figure 7), and is higher on the average for graphs with
higher input fraction (not depicted). MaxCompareOverhead is the overhead when after each operation, the
new result is compared with the previous value. MeanCompareOverhead is the overhead from comparing
values at the end of threads. All overhead decreases fast with increasing threadlength (Figure 8).

2.2.3.2 Demanddriven Scheme
The total cost is no longer constant in the demand driven scheme, and is always lower than in the
datadriven scheme. The cost decreases with the number of input terminals, and with the number of outputs.
Both factors probably reduce the relative number of nodes an average output depends on. The Maximum
test cost increases with the inputfraction for low inputfractions, and follows the total cost for higher
inputfractions (Figure 9).

OverheadMinBuffer
OverheadMedBuffer

OverheadMaxBuffer

Figure 7 Overhead vs. Changedfraction

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

10

DataCostNoBuffer
DemandCostNoBuffer
DataCostMaxBuffer
DemandCostMaxBuffer

Figure 10 Datadriven and Demanddriven Cost

It is interesting to note that the datadriven MaxTestCost is lower than the demanddriven cost for low
inputfractions and a not too low chancefactor (Figure 10). This seems counterintuitive and deserves an
explanation. Indeed, one would assume that because the datadriven scheme always executes the entire
graph, the cost must always be higher than the demanddriven execution cost. It appears however that under
certain conditions the datadriven mode can make better use of nodes producing the same output for
different arguments.

The demanddriven overhead is lower than the datadriven overhead, except for MaxCompareOverhead for
low values of the inputfraction (Figure 12). The difference in overhead between datadriven and
demanddriven execution increases with increasing inputfraction.

DataMaxBufferOverhead
DataMinBufferOverhead
DemandMaxBufferOverhead
DemandMinBufferOverhead

Figure 12 Datadriven and Demanddriven Overhead
vs. Inputfraction

The extra overhead generated by the maximum test scheme as compared to the minimum test scheme
(Figure 11) increases with inputfraction for a high chancefactor but decreases for low chancefactor. This is
the same for both datadriven and demanddriven execution.

CostNoBuffer
CostMinBuffer
CostMedBuffer
CostMaxBuffer

Figure 9 Demanddriven Cost vs. Inputfraction

Medium Chance
High Chance
Low Chance

Figure 11 Extra Overhead vs. inputfraction

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

11

2.2.4 Summary
0.968825596

0.675088289

0.580862568

0.523936767

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DataNoBuffer DataMinBuffer DataMedBuffer DataMaxBuffer DemandNoBuffer DemandMinBuffer DemandMedBuffer DemandMaxBuffer

0.656276374

0.477405464

0.417498979
0.3770561

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13 Comparison of average costs for datadriven and demanddriven execution

Averaging all simulations, demanddriven execution indeed displays a lower execution cost on the average
than datadriven execution, for all studied modes of caching, though exceptions were encountered for
specific conditions (Figure 13). Checking the input terminals for change reduces the cost to about the same
extent. The cost reduction obtained by caching intermediate results appears less dramatic, but this can be
partly caused by the unrealistically high average inputfraction.

D
at

aM
in

Bu
ffe

r

D
at

aM
ed

Bu
ffe

r

D
at

aM
ax

Bu
ffe

r

D
em

an
dM

in
B

uf
fe

r

D
em

an
dM

ed
B

uf
fe

r

D
em

an
dM

ax
B

uf
fe

r

Figure 15 Comparison of average overhead for
datadriven and demanddriven execution

The trade-off between cost reduction and comparison overhead will depend on how these factors compare
for a specific system. As can be seen in Figure 16, general conclusions are not straightforward. It appears
the medium buffer scheme is never cheaper than the maximum buffer scheme for demanddriven execution,
and for datadriven only when caching is useless anyway.

51.26744405

32.5679663

0

10

20

30

40

50

60

MaximumBuffer MediumBuffer

Figure 14 Cachesizes for maximum and
medium buffer scheme

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

12

Figure 16 Total Cost (calculation + overhead) for increasing relative comparison cost.

However, this result only represents the simulated population of graphs. By considering a subset of low
chancefactor, high inputfraction (Figure 17) or high chancefactor, low inputfraction (Figure 18), very
different results are obtained.

Figure 18 Total cost (high chance, low input)

3. Conclusion
Various execution schemes for dataflow environments are often presented without evidence concerning
their alleged benefits. This paper demonstrated the use of simulated execution on large numbers of graphs
as a possible remedy to this situation. It is shown that useful insights into the influence of graph properties
can be gained from the simulation results. Demanddriven and datadriven execution with various caching
strategies were compared. The simulations show that none of the scheme under study is consistently

Figure 17 Total cost (low chance, high
input)

Caching of Intermediate Results in Dataflow Environments
1998 IEEE Workshop on Emerging Technologies, Intelligent Measurements & Virtual Systems for Instrumentation & Measurements

13

superior in all cases. The thread length of a graph was introduced as a useful concept to explain the
influence of graph topology on the performance. The analysis of a simple example suggests that, to realise
the full benefit of caching, user interactions should be evenly distributed over the graph.

References
[AU77] A. V. Aho, J. D. Ullman, Principles of Compiler Design, Addison-Wesley, 1977.
[C88] B.W. Char, Maple users guide. Waterloo, Ontario, WATCOM publications, 1988.
[CG92] V. K. Chaudhri, R. Greiner, "A Formal Analysis of Solution Caching", Proceedings of the

Canadian Artificial Intelligence Conference, 11-15 May, 1992, Vancouver.
[DX97] IBM Visualisation Data Explorer User's Guide 3.1.4, IBM Corporation, May 1997.
[H92] D. D. Hils, “Visual Languages and Computing Survey: Data Flow Visual Programming Languages”,

Journal of Visual Languages and Computing (1992) 3, 69-101.
[H95] How to Use HP VEE, Edition 1, Jan. 1995, Hewlett Packard.
[SCNPW93] M. Stonebraker, J. Chen, N. Nathan, C. Paxson, J. Wu, “Tioga: Providing Data Management

Support for Scientific Visualisation Applications”, Proceedings 19th International Conference on Very
Large Data Bases, Dublin, 1993, 25-38.

[SR96] E. Steenput, Y. Rolain, “Auto-Consistent Mathematical Environment for Measurement Software
Development”, Proceedings of the IEEE Instrumentation and Measurement Technology Conference,
Brussels, Belgium, June 4-6, 1996, Volume I, pp 21-26.

[SR97] E. Steenput, Y. Rolain, “Data Consistency and Redundant Operations in Measurement System
Development”, Proceedings of the IEEE Workshop on Emergent Technologies & Virtual Systems for
Instrumentation and Measurement, Niagara Falls, Ontario, Canada, May 15-16, 1997, pp 112-117.

[SR97bis] E. Steenput, Y. Rolain, “Auto-Consistent Environment for Measurement Software
Development”, IEEE Transactions on Instrumentation and Measurement, Volume 46, number 4, August
1997, pp 742-746.

[WS95] A. Woodruff, M. Stonebraker, "Caching of Intermediate Results in Dataflow Diagrams,"
Proceedings of the 11th IEEE Symposium on Visual Languages, Darmstadt, Germany, September 1995.

